Nanoscale Organization of Multiple GPI-Anchored Proteins in Living Cell Membranes

نویسندگان

  • Pranav Sharma
  • Rajat Varma
  • R. C Sarasij
  • Ira
  • Karine Gousset
  • G Krishnamoorthy
  • Madan Rao
  • Satyajit Mayor
چکیده

Cholesterol and sphingolipid-enriched "rafts" have long been proposed as platforms for the sorting of specific membrane components including glycosyl-phosphatidylinositol-anchored proteins (GPI-APs), however, their existence and physical properties have been controversial. Here, we investigate the size of lipid-dependent organization of GPI-APs in live cells, using homo and hetero-FRET-based experiments, combined with theoretical modeling. These studies reveal an unexpected organization wherein cell surface GPI-APs are present as monomers and a smaller fraction (20%-40%) as nanoscale (<5 nm) cholesterol-sensitive clusters. These clusters are composed of at most four molecules and accommodate diverse GPI-AP species; crosslinking GPI-APs segregates them from preexisting GPI-AP clusters and prevents endocytosis of the crosslinked species via a GPI-AP-selective pinocytic pathway. In conjunction with an analysis of the statistical distribution of the clusters, these observations suggest a mechanism for functional lipid-dependent clustering of GPI-APs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-surface engineering with GPI-anchored proteins.

Protein engineering of cell surfaces is a potentially powerful technology through which the surface protein composition of cells can be manipulated without gene transfer. This technology exploits the fact that proteins that are anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, incorporate into their surface membranes and are fully functional. By substitu...

متن کامل

Identification of GPI anchor attachment signals by a Kohonen self-organizing map

MOTIVATION Anchoring of proteins to the extracytosolic leaflet of membranes via C-terminal attachment of glycosylphosphatidylinositol (GPI) is ubiquitous and essential in eukaryotes. The signal for GPI-anchoring is confined to the C-terminus of the target protein. In order to identify anchoring signals in silico, we have trained neural networks on known GPI-anchored proteins, systematically opt...

متن کامل

GPI-anchored protein organization and dynamics at the cell surface.

The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, inclu...

متن کامل

A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum

In this paper, we have investigated the effects of the pore-forming toxin aerolysin, produced by Aeromonas hydrophila, on mammalian cells. Our data indicate that the protoxin binds to an 80-kD glycosyl-phosphatidylinositol (GPI)-anchored protein on BHK cells, and that the bound toxin is associated with specialized plasma membrane domains, described as detergent-insoluble microdomains, or choles...

متن کامل

Distribution of a Glycosylphosphatidylinositol-anchored Protein at the Apical Surface of MDCK Cells Examined at a Resolution of <100 Å Using Imaging Fluorescence Resonance Energy Transfer

Membrane microdomains ("lipid rafts") enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2004